

 Page 10

Enhancing security for Encryption Process on Web Based

Application
Karuna D

1
 N. Rajesh

2
 S. Rajesh

3
 K Shirisha

4

1
Assistant professor, Dept.of CSE, Siddhartha Institute of Engineering & Technology, Ibrahimpatnam, Hyderabad, TS, India.

2
Assistant professor, Dept.of CSE, Siddhartha Institute of Engineering & Technology, Ibrahimpatnam, Hyderabad, TS, India.

3
Assistant professor, Dept.of CSE, Siddhartha Institute of Engineering & Technology, Ibrahimpatnam, Hyderabad, TS, India.
4
Student, Dept.of CSE, Siddhartha Institute of Engineering & Technology, Ibrahimpatnam, Hyderabad, Telangana, India.

ABSTRACT

The secure hash algorithm (SHA) is a widely used

function for password hashing. This study

introduced a modified SHA-512 algorithm by

modifying the message scheduling, hash

construction, and compression function, and

reducing the iterations, as well as examined the

modified algorithm's computational efficiency

according to the avalanche effect and attack

resistance capacity by performing brute-force,

rainbow table, dictionary, and online cracking

attacks via the Cain and Abel password-cracking

tool and Crack-Station. Data collection was done

by literature study, data collection from internet,

and observation. The research method is divided

into several processes, namely needs analysis and

system vulnerability, and analysis for

improvement. The program design consists of

flowchart design and conceptual design of a hash

function calling mechanism. Mitigation is carried

out with the implementation of the new hash

function calling a method, code change for system

repair (patching) and test results from

implementation. Testing is done by penetration

testing and user acceptance test (UAT) Testing

after application of patch, the inputted password

has been converted to more reliable hash function

using SHA 512 method, and the result of UAT

shows the result agreed and strongly agree with

86, 00%, so the implementation of the patch used

to secure the password that was made during

login can run as required.

KEYWORDS: Secure, Hash, Algorithm, Web,

SHA 512.

1 INTRODUCTION

The security issues sparked the mechanism to

control access to the network in order to protect it

from intruders [1]. A vulnerability in a web

application can be opening way for an attack in the

whole information system and does not close the

possibility for the control server [2]. One feature

of the login feature is to authenticate users as

identity checks where this function becomes an

essential component of the security system. This is

a way to differentiate between registered users and

intruders. Authentication users on a network is a

must for many companies that seriously protect

their information assets and to know who and what

will be accessed on their networks.

Various kinds of techniques for increase security

data or information already is developed, one

common way is by cryptographic or encryption

techniques [3].

Cite this article as: Karuna D, N.Rajesh, S.Rajesh & K

Shirisha, "Enhancing security for Encryption Process on

Web Based Application", International Journal of Research

in Management Studies, Volume 4 Issue 3, 2019, Page 10-

21.

 Page 11

Use of encryption is needed to support the security

of the login process. The sample web-based

application used has been applied encryption

method using Message Digest 5 (MD5) method so

it must be updated using another more reliable

method.

The SHA algorithm has a difference in the size of

each block, the word of the data used during the

hashing process, the length of the message can be

processed, and the size of the resulting message

digest varies according to the algorithm used,

shown as in Table 1. The size of the Message

Digest.

Table 1. Differences Each SHA Algorithm

Variation

Algorithm Message

Length

(bit)

Block

Size

(in

bits)

Word

Size

(in

bits)

The Size

of the

Message

Digest

(bit)

SHA 1 <2
64

 512 32 160

SHA 256 <2
64

 512 32 256

SHA 384 <2128 1024 64 384

SHA 512 <2128 1024 64 512

SHA 1 has a 2
64

-1 message input capacity, with

160 bits of hash results and 2
80

 hash power

evaluations. Finally, in 2005 Rijmen and Oswald

published an attack on the reduced SHA 1 version

(using only 53 rounds from 80 rounds) and the

results were found the collision with a complexity

of about 2
80

 operations [3].

SHA 256 and 384 are not used much even though

for security due to a protracted process that causes

the length of time in hashing [4]. SHA 512 is a

development of SHA 1 which is an MD4 based

improvement. According to Megah Mulya [5],

2009, the reliability of SHA 512 is achieved by the

ability to generate 512-bit hash values, which is

the longest hash value that a hash function can

generate. This long hash value makes the SHA

512 more resistant to attack than any other hash

function so SHA 512 is considered a powerful,

robust and fast hash function.

2 BASIC TEORY

2.1 Login System

An application or system that requires

authentication of the owner of the access is

definitely implementing the login system to secure

the data. Login activity is generally done by

entering data in the form of username and

password that has been registered in the

application or system. If the information is valid,

then the client is allowed to access the network

[6].

2.2 Encryption

Encryption is a process that changes a code from

an understandable into a code that cannot be

understood or not readable. Encryption is intended

to protect information from being seen by non-

people or parties [7]. The way encryption works

are shown in Figure 1.

Figure 1. Working Mechanism of Encryption

and Decryption

2.3 Hash Cryptography Algorithm The one-way

hash function is a one-way hash function [4]. A

one-way hash function, also known as message

summary or compression function is a

 Page 12

mathematical function that takes the enter variable

length and converts it into a binary sequence of a

fixed length. The one-way hash function is

designed in a way that is difficult to reverse the

process, ie to find the circuit at a certain value

(hence it is called one direction). The hash

function is good if it is difficult to find 2 strings

that will produce the same hash value [8]. The way

the hash function works is shown in Figure 2.

Figure 2. Working Mechanism of One Way

Hash Function

2.4 Secure Hash Algorithm (SHA) 512 The SHA

512 algorithm is an algorithm that uses the one-

way hash function created by Ron Rivest. This

algorithm is the development of previous

algorithms SHA 0, SHA 1, SHA 256 and SHA

384 algorithms. Journal of research Christian

Angga [9], 2007, explains how the cryptographic

algorithm of SHA 512 is receiving input in the

form of messages of any size and generates

message diggest which has 512-bit length.

Its predecessor is SHA1, and MD5 which is a

renewal of MD4, the linkage, and development of

the hash algorithm, indicating that the algorithm

has proven to have been found to be a collision

vulnerability. Currently, the National Institute of

Standards and Technology (NIST) has made SHA

224, SHA 256, SHA 384, and SHA 512 as the new

standard hash function. In Table 2 the resume

parameters show some hash functions.

Table 2. Comparison of Multiple Hash Functions

Algorithm The Size

of the

Message

Digest

(bit)

Message

Block

Size

Collision

MD2 128 128 Yes

MD4 128 512 Almost

MD5 128 512 Yes

RIPEMD 128 512 Yes

RIPEMD-

128/256

128/256 512 No

RIPEMD-

160/320

160/320 512 No

SHA-0 160 512 Yes

SHA-1 160 512 There is a

Disability

SHA-256/224 256/224 512 No

SHA-512/384 512/384 1024 No

WHIRPOOL 512 512 No

SHA 512 hash function performs the same hash

operation as SHA 2 operation in general [10].

SHA 512 hash function is a function that generates

message diggest 512-bit size and 1024 bit block

length. How the cryptographic algorithm works

SHA 512 is to accept input in the form of a

message with any length or size and will generate

a message digest that has a fixed length of 512 bits

as shown in Figure 3.

 Page 13

Figure 3. Working Illustration / Creation of

Message Digest SHA 512

The workings of making message diggest with

SHA 512 algorithm are as follows:

1. The addition of bits

The first process is to add a message with a

number of bit wedges such that the message

length (in bits) is congruent with 890 mod 1024.

The thing to remember is that the 1024 number

appears because of the SHA 512 algorithm

processes messages in blocks of 1024 sizes. If

there is a message with a 24-bit length, then the

message will still be added with the bundle bits.

The message will be added with 896- (24 + 1) =

871 bits. So the length of the wedge bits is

between 1 and 896. Then one more thing to note is

that the bit bits consist of a bit 1 followed by the

remaining bit 0.

2. Adding Long Message Redemption Value

Then the next process is the message added

again with 128 bits stating the length of the

original message. If the message length is

greater than 2128 then the length is taken in

modulo 2128. In other words, if initially, the

message length is equal to K bit, then 128 bit

adds K modulo 2128, so after the second

process is done then the message length now is

1024 bits.

3. Initialize Hash Value

In the SHA 512 algorithm, the H hash value

(0) consists of 8 words with 64 bits in the

hexadecimal notation as in Table 3.

Table 3. Hexadecimal Notation SHA 512

Buffer Initial Value

A 6a09e667f3bcc908

B bb67ae8584caa73b

C 3c6ef372fe94f82b

D a54ff53a5f1d36f1

E 510e527fade682d1

F 9b05688c2b3e6c1f

G 1f83d9abfb41bd6b

H 5be0cd19137e2179

3 METHODOLOGY

This section will explain the systematic way used

to solve the research problem and also the steps

undertaken in the testing and analysis of this

research. The stages consist of literary studies is to

analyze the system used to determine the current

conditions, needs, advantages, and disadvantages

of these programs. This stage is done by reading

several books, previous research journals, papers

or articles that are appropriate or relevant as well

as collecting resources from the internet both

journals, websites, proceedings and source code

that can be used in this research.

Needs analysis and system vulnerabilities are

carried out to analyze the vulnerabilities and needs

of the system used. The analysis is focused on the

web-based application login system encryption

function which aims to find out the advantages and

disadvantages of the encryption method currently

used when replaced using the latest algorithm

method.

Needs analysis and design for improvement are to

describe and display an overview of the encryption

process when the login is done. The description

carried out is by showing a flowchart and

conceptual diagram so that the work process in

which password encryption is carried out until the

login activity occurs can be delivered and

understood more clearly.

 Page 14

Mitigation performed with the implementation of

the latest hash function algorithm calling the

method, code change for patching and test results

from implementation. Testing in this study was

conducted to show a comparison between the use

of MD5 encryption method and SHA 512

encryption method. Testing was done by

Penetration Testing and User Acceptance Test.

Penetration Testing is done by Brute Force testing

while User Acceptance Test is done by filling out

a questionnaire that is used as one of the

recommendations to improve data security in web-

based applications. These stages are described in

Figure 4.

Figure 4. Block Diagram of Research

Methodology

4 RESULTS AND DISCUSSION

4.1 Vulnerability Analysis

Information security is the preservation of

information from all possible threats in an attempt

to ensure or ensure business continuity, minimize

business risk, and maximize or accelerate return

on investment and business opportunitie [11]. This

analysis is a discussion of how the system login on

web-based applications running. This analysis is

useful to know the vulnerability of the system so

that it can know the improvements that need to be

done.

This study discusses the analysis of encryption

process in the web-based application using

algorithm method of a secure hash algorithm

(SHA) 512. The results of the analysis carried out

will be used as a reference or alternative in

managing web-based application login security

systems. Analysis of the problem that is being

discussed in this research will be explained in

Figure 5.

 Figure 5. Schema Login In Web-Based

Application

The explanation of the web-based application

login scheme above is as follows.

1. Users enter the data in the form of username

and password and send the data to the server.

The data sent is data that has been changed

using the MD5 hash.

2. The server receives the data in the form of a

username and a hash value of the password

that has been sent by the user.

3. The server will bring the hash value to the

database to be equated with the hash value of

the user's password. Verification process here

is password verification in the form of hash

value and not the password in plaintext form.

4. If the hash value sent by a user with stored in

the same database then a user can enter and

access system, but if not used will get a

Attacker

User

Password changed to hash
value

Successfully accessing the
system if the password hash is

appropriate

Web-based
application

system

Server and database
The hash value of the password is
adjusted by the hash value in the

database
Login, input username

and password
Sniffing Attack,

Data Hacked

Return to login form if password
hash does not match Study of Literature

Needs Analysis And System
Vulnerabilities (Current Conditions)

Needs Analysis And Design For
Improvement

Mitigation/implementation Of The Latest
Hash Method (patching)

Testing

 Page 15

warning that the wrong password and return to

main page login.

5. The problems found are the use of MD5 hash

methods that are vulnerable to collision attacks

[12], that threatening the security and

confidentiality of data such as the MITM

attack (Man In The Middle Attack) to conduct

sniffing, spofing and other illegal activities

[13].

4.2 Requirement and Improvement Analysis

This analysis is a discussion of what are the needs

of improving the login system in webbased

applications. After the needs and vulnerability

analysis is done, the result is that the login system

in the application must update the hash method

used.

After knowing the hash method used in the login

system, the use of encryption with the MD5 hash

function has to be updated with more current and

more reliable methods to maintain the security of

an application or system. Renewal of this hash

method is done by SHA 512 hash method which

has more reliability than MD5.

4.3 Mitigation and Testing

4.3.1 System Attack Scheme The analysis process

should be able to link information from different

variable includes the completion of information

against other information to explain an event or

attacks activity [14]. Network forensics is defined

in as capture, recording, and analysis of network

events in order to discover the source of security

attacks or other problem incidents. In other words,

network forensics involves capturing, recording

and analyzing of network traffic [15]. Sniffing on

a computer network involves the use of a support

tool that enables real-time monitoring. Sniffing in

this study was done to check traffic on the network

and retrieve a copy or capture of the packet data.

The sniffing activity scheme is described in Figure

6.

Figure 6. Sniffing Activity Scheme

The sniffing experiment in this study was

conducted with the Wireshark tool. Wireshark is

one of the network packet analyzer tools.

Wireshark will try to capture network packets and

try to display the packet data as completely as

possible. After the data obtained then will be

analyzed the data capture results Wireshark to

determine what type of hash function used by the

system. The analysis to determine the type of hash

function is done with the Hash Identifier tool. As

an example of sniffing activities and analyzing the

type of hash function performed in Figure 7 and

Figure 8.

Figure 7. Sniffing Results Using Wireshark

Applications

Figure 7 is the result of data traffic capture done

using Wireshark tool. Capture data shows

username information contains admin and

password contains ciphertext with hash value

154e2803428bb34b2a1c48ffadd177b6. After

obtaining the information is needed additional data

that is the hash function is likely to be used by the

system using Hash Identifier.

 Page 16

Figure 8. Hash Identifier results

Figure 8 shows that the login process on the

application system has applied the MD5 hash

method.

4.3.2 Design Improvement

To facilitate analysis, a design and description for

system improvement will be made by showing a

flowchart and a conceptual image as described in

Figure 9 and Figure 10.

Figure 9. Flowchart Login Process Using SHA

512

Method

Based on the flowchart presented in Figure 9,

process no. 3 that was previously encrypted using

MD5 is changed using SHA 512 method. So in

that process, the data transmission in the form of

input from password will be changed to SHA 512

hash form which has the hash value much longer

than MD5 therefore, user data will be more secure

from a vulnerability that can occur when using

MD5 as described in Figure 10.

Figure 10. Image Conceptual Login Process

Username and User Password Using

SHA 512

The explanation of the conceptual image is as

follows.

1. Users access the application and login to login

to the application. The login process is done by

sending data in the form of username and

password. The process of sending data is done

by changing the password data in the form of

plaintext into SHA 512 ciphertext hash.

2. The application server receives the data in the

form of the hash value of the password and

then forward it to the database. This process is

performed to verify the hash sent by the user

whether it is the same as the password hash

stored in the database (hash function for

storing password).

3. If the data is suitable then the user can enter

and access the application.

4.3.3 Patching Implementation Renewal is done

by changing the existing hash method into SHA

512 hash method combined with the addition of

SALT secret key.

Implementation done at this stage is encoding by

creating a patch that will be used to call a hash

function during login.

User

Successfully accessing the
system if the password hash is

appropriate

Web-based
application

system

Server and database
The hash value of the password is
adjusted by the hash value in the

database
Login, input username

and password

Return to login form if password
hash does not match

The password is changed to
SHA 512 hash value

. Start 1

. Input 2
username

& password

. Change the 3
password to SHA

 hash form 512

. Check the 4
database

5 . Home
system

6 . Finish

Y

T

 Page 17

The plot of the calling process and the data

changes for the username and password is first

made before the encoding is done, so it can be

known where the calling of the hash function

calling can change the password to the ciphertext

hash value. This process generates a flowchart

calling the hash function on the system. There is

also a diagram can be seen in Figure 11.

 Figure 11. The Hash Function Calling Diagram

The process diagram shown in Figure 11 can be

described as follows:

1. The index.php file is the first file executed by

the program or application. This file will

display the login form, will then call the gtfw-

php-base file as the base library of the system.

2. The gtfw_base_dir.def file shows where the

gtfw-php-base file is located and goes directly

to index.php located in gtfw-phpbase.

3. Inside index.php gtfw-php-base contains

system libraries that invoke many functions or

activities to process the system as a base/base

function to run the system.

4. The index.php file on gtfw-php-base will

process GTFW_BASE_DIR_CORE on the

GtfwCpu.class.php file. The main functions

that are processed are the initialize and process

functions. The initialize (init) function is a

function that will run the security command.

The function of the process is a function that

access/process some modules/actions, one of

which is the module to log in. If in process

function access login module and another

module with "enable security" then

automatically fungi init will be executed.

5. If init is done then will go to file

GtfwSecurity.class.php and call the login

function residing in it. This login function

performs a hash method call for encryption to

secure password data when login is done. The

coding done in this research includes changing

the code or patch. The GtfwSecurity.class.php

file is used to print the hash value of a user-

entered password by calling the SHA 512 hash

function and receiving the hash value from the

server to match the hash values stored in the

database with the hash values generated from

the input process. The source code line for the

GtfwSecurity.class.php file can be seen in the

script below.

$salt = $this->RequestSalt(); if

($hashed) { $hash = md5(md5($salt

.

$user['Password'])); } else { $hash =

$user['Password']; } if

(md5($password) === $hash) {

Changes and additions to code are done in the

GtfwSecurity.class.php file, the addition of the

code is used to call the SHA 512 hash function

that has been implemented earlier in the GTFW

application. The source code line for the

GtfwSecurity.class.php file after adding the code

can be seen in the script below.

Index.php
() gtfw-php-app

Config/gtfw_base_dir.def
configuration that calls into (

gtfw base)

Index.php
gtfw-php-base ()

Cpu/
GtfwCpu.class.php

GtfwSecurity.class.php
) (function login

In Gtfw Cpu the first function
called is the initialize (init)

function and then the process
function

Runs the login
function and processes

the SHA 512 hash

The function of the process
will call the module for login

and activity with "enable
security"

Inside GtfwCpu there are 2
activities or processes,

namely initialize and process

Automatically the
init security

function in initialize
is executed

Run the init
function

 Page 18

$salt = $this->RequestSalt(); if

($hashed) {

$hash = hash('sha512', hash('sha512',

$salt . $user['Password'])); } else {

$hash = $user['Password']; } if (hash('sha512',

$password) === $hash) {

After the password is set to hash value, then the

system will do the user data from the server then

adjust the hash value with the existing in the

database. Then stored in the login session and

login process was successful.

4.3.4 Results of Patching Implementation The

result of adding code or scripts done in the

previous process is to increase the value of

security in the process of sending data. The result

after the program is executed can be seen as in

Figure 12 and Figure 13.

Figure 12. Results Process Call Hash Function

Before

Patching Performed

Figure 13. Results of the Hash Function Calling

Process

After Patching Performed

4.3.5 Testing

4.3.5.1 Penetration Testing

This test has a purpose to show the resistance and

strength of each algorithm against brute force

attacks. The testing mechanism is to attack the

resulting hash value by trying any combination to

find the plaintext of the hash. This test is done by

using Hashcat tool that serves to get plaintext from

a hash or ciphertext. The result of this test is the

comparison of time from which hash is faster-

found plaintext him. In the brute force test, the

data obtained from the experiment is the time

taken to obtain a plaintext that has been in the hash

with MD5 takes an average of 54 seconds while

the time taken for hash with SHA 512 takes an

average of 68 seconds. Based on the test it was

found that the SHA 512 algorithm is better in

terms of durability and strength for brute force

testing because it has a longer time to find the

plaintext of the hash value of the algorithm.

4.3.5.2 User Acceptance Test User Acceptance

Test is a testing process undertaken by the

developer that will produce the document

presented as evidence that the implementation of

the program can be accepted by the developer in

accordance with the required. The result of the

percentage of user acceptance test is presented in a

pie chart as shown below.

Disagree

Less

Agree

Neutral

Agreeme

nt

Strongly

0 %

78 %

8 %
14 %

0 %

 Page 19

Agree

Figure 14. Percentage Test Result User

Acceptance Test

Figure 14 shows the percentage of the above

values indicates the responses of respondents to

the statements in the Security Test questionnaire

with SS answers of 8.00%, S of 78.00%, N of

14.00%, TS by 0.00%, and STS for 0.00%. Results

obtained from the above test can be seen in Table

4 as table comparison of data security between

before and after patching.

Table 4. Comparison Table Before and After

Patching

Performed

No. Parameter

Comparison

Before

Patching

After

Patching

1.

Security

standard for

login feature.

Not fulfilling,

because it still

uses the old

hash method

that has been

proven to have

a dangerous

vulnerability.

Already

fulfilled. The

encryption

update uses

hash

functions that

have a more

reliable and

robust

security level.

2.

The level of

password

security on

the

mechanism of

web-based

application

Less good,

because the

algorithm

method used

has been

proven to have

dangerous

Good,

because the

algorithm

method used

proved more

secure and

reliable.

login feature. vulnerabilities.

3.

The total

value of the

hash function

generated.

The resulting

hash value is

small so it only

takes a while

when a brute

force test is

performed.

The resulting

hash value is

much more

so as to

generate a

long time

when a brute

force test is

performed.

5 CONCLUSION

Based on the results of research and discussion can

be concluded that the login process in webbased

applications requires updating of the encryption

method used by the method of SHA 512

algorithm. This update aims to improve the

security of password data on logging features that

are more reliable and powerful so that the attacker

will be very difficult to attack the system.

Implementation of the SHA 512 algorithm method

produces the longest number of bits of 512 bits so

as to ensure system security and data

confidentiality.

Penetration Testing against Brute Force attacks

using the Hashcat tool indicates that the SHA 512

algorithm is better in terms of endurance and

strength for brute force testing because it has a

longer time to find the plaintext of the hash value

of the algorithm thus indicating that the hash

function is more reliable and robust. In addition to

testing the User Acceptance Test generate agreed

percentage and strongly agree at 86.00%, so the

 Page 20

implementation of the patch used to secure

passwords on the login feature can run as required.

REFERENCES

[1] E. Kurniawan and I. Riadi, “Security level

analysis of academic information systems

based on standard ISO 27002:2003 using

SSE-CMM,” vol. 16, no. 1, pp. 139–147,

2018.

[2] I. Riadi, E. I. Aristianto, and A. Dahlan,

“An Analysis of Vulnerability Web Against

Attack

Unrestricted Image File Upload,” Comput.

Eng. Appl., vol. 5, no. 1, pp. 19–28, 2016.

[3] P. Irfan, Y. Prayudi, and I. Riadi, “Image

Encryption using Combination of Chaotic

System and Rivers Shamir Adleman (RSA

),” Int. J. Comput. Appl., vol. 123, no. 6, pp.

11– 16, 2015.

[4] M. H. W, “Development of Hash Function

Encryption on SHA (Secure Hash

Algorithm),” J. Ilmu Komput. dan Teknol.

Inf., vol. 3, no. 2, pp. 1–7, 2009.

[5] M. Megah, “Use of SHA-512 Algorithm to

Ensure Integrity and Authenticity of

Message on Intranet,” no. 1, pp. 107–111,

2009.

[6] N. Hermaduanti and I. Riadi, “Automation

framework for rogue access point

mitigation in ieee 802.1X-based WLAN,” J.

Theor. Appl. Inf. Technol., vol. 93, no. 2,

pp. 287–296, 2016.

[7] A. Kristanto, Data Security On Computer

Networks. Yogyakarta: Penerbit Gava

Media, 2003.

[8] SSL Information, “Difference Between

Hashing and Encryption,” 2018. [Online].

Available:

https://www.ssl2buy.com/wiki/differencebe

tween-hashing-and-encryption.

[9] C. Angga, “Analysis of How Diverse

Works Hash Functions Exist,” pp. 1–6,

2011.

[10] W. Setiawan, “Analysis and Comparison of

Whirlpool and SHA-512 Algorithms as a

Hash Function,” Makal. IF3058 Kriptografi

– Sem. II Tahun 2010/2011, 2011.

[11] Y. P. Rosmiati, I. Riadi, “A Maturity Level

Framework for Measurement of

Information

Security Performance,” Int. J. Comput.

Appl., vol. 141, no. 8, pp. 975–8887, 2016.

[12] S. Dewantono, “Weakness of Message

Digest Function 5,” 2011.

[13] M. S. Ahmad, I. Riadi, and Y. Prayudi,

“Live Forensics Live From Investigation To

Analyze Man Attacks in the Middle Attack

Evil Twin Based,” Ilk. J. Ilm., vol. 9, no.

April, pp. 1–8, 2017.

[14] M. I. Mazdadi, I. Riadi, and A. Luthfi,

“Live Forensics on RouterOS using API

Services to Investigate Network Attacks,”

Int. J. Comput. Sci. Inf. Secur., vol. 15, no.

2, pp. 406–410, 2017.

[15] D. Mualfah and I. Riadi, “Network

Forensics For Detecting Flooding Attack On Web

Server,” IJCSIS) Int. J. Comput. Sci. Inf. Secur.,

vol. 15, no. 2, pp. 326–331, 2017.

